A single device delivering low-energy therapy designed for multiple arrhythmias


Today, high-energy defibrillators offer life-saving therapy but often with negative side effects. In fact, studies show almost 1 in 4 patients experience anxiety or depression after receiving an implantable cardioverter defibrillator (ICD).(1)

Cardialen is working to change that.

Cardialen is developing MultiPulse Therapy (MPT), the only low-energy therapy designed to treat tachycardia and fibrillation using today's implantable device technologies. Once clinically proven, MPT may be used to treat ventricular tachycardia, ventricular fibrillation, and atrial fibrillation as a first-line therapy while reducing the potential for high-energy shocks.



MultiPulse Therapy Overview


Find out how MultiPulse Therapy is designed to detect and treat atrial fibrillation (AF), rapid ventricular tachycardia (VT) and ventricular fibrillation (VF).

Targeting AF, VT and VF




In patients with an ICD atrial fibrillation (AF) is common.(2) Unfortunately, the longer a patient is in AF the more likely AF will progress.(3)


Now, there is a possible solution for changing how AF is managed.



  • AF is the most common type of heart arrhythmia.(4)

  • The death rate from AF as the primary or a contributing cause of death has been rising for more than two decades.(4)

  • There are 750,000 AF hospitalization each year.(4,5)

  • In the U.S., patients with AF incur $6 - $26 billion in incremental health care costs.(6)

Today's defibrillators can only detect AF. Previous attempts to treat AF have shown high-energy shocks to be intolerable.(7)


At energy levels considered to be pain-tolerable, MultiPulse Therapy (MPT) targets AF with low-energy therapy to:(8,9)

  • Excite the tissue

  • Terminate the arrhythmia

  • Restore normal heart rhythm with low energy



Research shows that:

  • Early intervention may arrest and reverse AF disease progression.(8-11)

  • MPT may stop AF and its symptoms early.(12)





To treat Ventricular Tachycardia (VT) and Ventricular Fibrillation (VF), current defibrillators deploy high-energy shocks that are associated with patient distress disorders(1,13-16), cellular damage(17) and decreased battery life.(18) And although some devices provide low-energy pacing therapy (ATP), pacing has limited effectiveness.(19)


Fortunately, there may be another way.


  • 91% effectiveness in ATP-refractory VT(8)

  • 79% less energy required to treat VF compared to high-energy shocks(20)


Breakthrough MultiPulse Therapy (MPT) may successfully treat tachyarrhythmias with substantially lower energy therapy than is delivered by today's defibrillators.(2,4,7-12,21) 


To treat VT and VF, MPT:

  • Delivers a proprietary sequence of low-energy pulses to selectively excite tissue, temporarily creating a block for VT and VF and restoring normal heart rhythm.(2,4,7-12,21)

  • Creates Virtual Electrodes within the excited tissue, temporarily disrupting the arrhythmia and resetting the heart, reducing the potential for high-energy shocks.(3, 22-27)



Research shows that:

  • Addressing rapid VT and VF with lower energy may be better for the patient, better for the battery and better for device longevity.(18)

  • MPT may reduce the potential for high-energy shocks and the need for anticoagulants.(8,25) 

  1. Magyar-Russell G, Thombs BD, Cai JX, et al. The prevalence of anxiety and depression in adults with implantable cardioverter defibrillators: a systemaOc review. J Psychosom Res. 2011;71(4):223-231. doi:10.1016/j.jpsychores.2011.02.014

  2. Janardhan AH, Gutbrod SR, Li W, Lang D, Schuessler RB, Efimov IR. Multistage electrotherapy delivered through chronically-implanted leads terminates atrial fibrillation with lower energy than a single biphasic shock. J Am Coll Cardiol. 2013;63(1):40-48. doi:10.1016/j.jacc.2013.07.098.

  3. Gutbrod SR, Efimov IR. A shocking past: a walk through generations of defibrillation development. IEEE Trans Biomed Eng. 2014;61(5):1466-1473. doi:10.1109/TBME.2014.2301035.

  4. Li W, Janardhan AH, Fedorov V V, Sha Q, Schuessler RB, Efimov IR. Low-energy multistage atrial defibrillation therapy terminates atrial fibrillation with less energy than a single shock. Circ Arrhythm Electrophysiol. 2011;4(6):917-925. doi:10.1161/CIRCEP.111.965830.

  5. Centers for Disease Control and Prevention. About multiple cause of death 1999–2011. CDC WONDER Online Database. 2014. [cited 2014 Oct 2]. Available from:

  6. Kim MH, Johnston SS, Chu BC, et al. Estimation of total incremental health care costs in patients with atrial fibrillation in the United States. Circ Cardiovasc Qual Outcomes. 2011 May;4(3):313-20. doi: 10.1161/CIRCOUTCOMES.110.958165

  7. Janardhan AH, Li W, Fedorov V V., et al. A novel low-energy electrotherapy that terminates ventricular tachycardia with lower energy than a biphasic shock when antitachycardia pacing fails. J Am Coll Cardiol. 2012;60(23):2393-2398. doi:10.1016/j.jacc.2012.08.1001.

  8. Ng FS, Toman O, Petru J, et al. Painless Atrial Cardioversion Using Low-Energy Multistage Electrotherapy: First-In-Man Feasibility Trial - C-PO01-21. Hear Rhythm. 2017;14(5):S94-S143. doi:10.1016/j.hrthm.2017.04.005.

  9. Ng FS, Toman O, Petru J, et al. Low Energy Multistage Electrotherapy Cardioverts Atrial Fibrillation in a Statistically Causal Manner - C-PO03-76. Hear Rhythm. 2017;14(5):S235-S326. doi:10.1016/j.hrthm.2017.04.007.

  10. Meyers J, Gutbrod SR, Lancaster T, et al. Low Energy Multistage Electrotherapy for Ventricular Defibrillation in a Canine Model - C-PO05-34. Hear Rhythm. 2017;14(5):S418-S513. doi:10.1016/j.hrthm.2017.04.009.

  11. Ambrosi CM, Ripplinger CM, Efimov IR, Fedorov V V. Termination of sustained atrial flutter and fibrillation using low-voltage multiple-shock therapy. Hear Rhythm. 2011;8(1):101-108. doi:10.1016/j.hrthm.2010.10.018

  12. Efimov I, Ripplinger CM. Virtual electrode hypothesis of defibrillation. Hear Rhythm. 2006;3(9):1100-1102. doi:10.1016/j.hrthm.2006.03.005.

  13. Kamphuis HCM, de Leeuw JRJ, Derksen R, Hauer RNW, Winnubst JAM. Implantable cardioverter defibrillator recipients: quality of life in recipients with and without ICD shock delivery: a prospective study. Europace. 2003;5(4):381-389.

  14. Bilge AK, Ozben B, Demircan S, Cinar M, Yilmaz E, Adalet K. Depression and anxiety status of patients with implantable cardioverter defibrillator and precipitating factors. Pacing Clin Electrophysiol. 2006;29(6):619-626. doi:10.1111/j.1540-8159.2006.00409.x.

  15. Sears SF, Todaro JF, Lewis TS, Sotile W, Conti JB. Examining the psychosocial impact of implantable cardioverter defibrillators: a literature review. Clin Cardiol. 1999;22(7):481-489.

  16. Sears SF, Vazquez LD, Matchett M, Pitzalis M. State-of-the-art: anxiety management in patients with implantable cardioverter defibrillators. Stress Heal. 2008;24(3):239-248. doi:10.1002/smi.1200.

  17. Jones JL, Proskauer CC, Paull WK, Lepeschkin E, Jones RE. Ultrastructural injury to chick myocardial cells in vitro following “electric countershock.” Circ Res. 1980.

  18. Winkle RA. Evolution of the implantable cardioverter-defibrillator: from bullets to BBs. J Am Coll Cardiol. 2012;60(23):2399-2401. doi:10.1016/j.jacc.2012.07.066

  19. Gillis AM, Morck M, Exner D v., et al. Impact of atrial antitachycardia pacing and atrial pace prevention therapies on atrial fibrillation burden over long-term follow-up.Europace. 2009;11(8):1041-1047. doi:10.1093/europace/eup115

  20. Meyers J, Gutbrod SR, Lancaster T, et al. Low Energy Multistage Electrotherapy for Ventricular Defibrillation in a Canine Model - C-PO05-34. Hear Rhythm. 2017;14(5):S418-S513. doi:10.1016/j.hrthm.2017.04.009.

  21. Ripplinger CM, Krinsky VI, Nikolski VP, Efimov IR. Mechanisms of unpinning and termination of ventricular tachycardia. Am J Physiol Heart Circ Physiol. 2006;291(1):H184-H192. doi:10.1152/ajpheart.01300.2005.

  22. Cheng Y, Mowrey KA, Van Wagoner DR, Tchou PJ, Efimov IR. Virtual electrode-induced reexcitation: A mechanism of defibrillation. Circ Res. 1999;85(11):1056-1066.

  23. Efimov IR, Cheng Y, Van Wagoner DR, Mazgalev T, Tchou PJ. Virtual electrode-induced phase singularity: a basic mechanism of defibrillation failure. Circ Res. 1998;82(8):918-925.

  24. Efimov IR, Aguel F, Cheng Y, Wollenzier B, Trayanova N. Virtual electrode polarization in the far field: implications for external defibrillation. Am J Physiol Heart Circ Physiol. 2000;279(3):H1055-70.

  25. Connolly A, Vigmond E, Bishop M. Virtual electrodes around anatomical structures and their roles in defibrillation. PLoS One. 2017;12(3):e0173324. doi:10.1371/journal.pone.0173324.

  26. Rantner LJ, Arevalo HJ, Constantino JL, Efimov IR, Plank G, Trayanova NA. Three-dimensional mechanisms of increased vulnerability to electric shocks in myocardial infarction: altered virtual electrode polarizations and conduction delay in the peri-infarct zone. J Physiol. 2012;590(18):4537-4551. doi:10.1113/jphysiol.2012.229088.

  27. Connolly A, Robson MD, Schneider J, Burton R, Plank G, Bishop MJ. Highly trabeculated structure of the human endocardium underlies asymmetrical response to low-energy monophasic shocks. Chaos. 2017;27(9):1-15. doi:10.1063/1.4999609.